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A novel theoretical approach is presented for the direct calculation of conformational free energies without
the need for expensive free energy simulations and the use of computational alchemy. It is shown that
conformational search combined with advanced Monte Carlo integration can tackle the daunting problem of
solving the molecular configuration integral in all degrees of freedom, affording a direct method to calculate
accurate conformational free energies. The new algorithm termed mode integration (MINTA) was applied
here to explain anharmonic effects in cycloheptane and to predict theA value of cyclohexane derivatives and
the anomeric free energy of carbohydrates (tetrahydropyran derivatives and pyranose monosaccharides) using
a continuum solvation model.

Introduction

Chemical stability can always be formulated in terms of
conformational free energy (CFE) differences. There can be
various levels envisioned at which approximations to CFE
differences can be made. For example, one wishes to calculate
the anomeric free energy for the equilibrium ofR andâ anomers
of monosaccharides. The simplest approach one can follow is
to calculate the energy difference between the lowest energyR
and the lowest energyâ anomer. Of course, this approach
ignores entropic effects due to the fact that first of all there are
multiple conformations of both theR andâ anomers and, second
of all, the individual conformations are not static (confined to
the bottom of their energy well) but exhibit large dynamic
diversity in terms of conformational changes limited to that
energy well. Note that glucose, for example, possesses liter-
ally hundreds of low-energy conformations of both anomeric
states.
The next level of approximation to the CFE is the inclusion

of multiple conformations. With this model, two families of
different conformational isomers, configurational isomers or
stereoisomers, both represented by multiple conformations, are
considered as two sets of discrete energy levels corresponding
to the energies of the individual conformations. A simple
statistical mechanics calculation can then be used to estimate
the free energy difference between the two families. Note that
such families, henceforth termed somewhat confusingly con-
formational families, can represent either multiple conformations
related to each other by some geometrical criterion, such as
holding axial or equatorial substituents, or multiple conforma-
tions of stereoisomers. The terms conformational free energy
and conformational free energy difference are used generally
throughout. However, for example, theA values of cyclohexane
derivatives (vide infra) represent actual conformational free
energy differences, but the anomeric free energy of monosac-
charides refers to the free energy difference betweenR andâ
diastereomers, i.e.,R, â anomers.
The ultimate approach for calculating the free energy differ-

ence∆G between two conformational families, in the classical

sense, involves the evaluation of the molecular configuration
integralQ

where the indices 1 and 2 refer to two conformational families.
It is assumed throughout that the dominant part of the config-
uration integral comes from contributions at or near to low-
energy conformations. Therefore,Q is summed over, respec-
tively, n1 andn2 conformations, each encompassing differentV
volumes of the conformational space.E(r ) is the molecular
mechanics energy with respect to the nuclear coordinatesr . E0
is the global minimum energy which is the common reference
for both conformational families.R is the gas constant, andT
is the absolute temperature.K12 in the second term of eq 2 is
the population ratio of the conformational families at equilib-
rium. Note that all of the symmetry-related copies of a single
conformation including conformational enantiomers should be
included in the sum in eq 1 to account for the statistical
correction for conformational symmetry.
Direct evaluation of the configuration integral has been con-

sidered to be impossible to solve except for problems of very
low dimensionality. Instead, indirect methods utilizing various
simulation techniques based on free energy perturbation (FEP)1

and, recently, a novel smart Monte Carlo approach termed jump-
between-wells (JBW)2 have been used extensively to calculate
conformational free energy differences. The JBW method
coupled with molecular dynamics involves directly monitoring
the populations of various conformations of the two conforma-
tional families (rhs of eq 2) in a simulation in which confor-
mational interconversions occur frequently, producing con-
verged, Boltzmann-weighted ensembles of conformational states.
Very recently, direct methods have also emerged that involve

the direct evaluation of the configuration integral as sums over
conformational minima (eq 1). Most notably, a new methodX Abstract published inAdVance ACS Abstracts,November 15, 1997.
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termed “mining minima” has been introduced in which the
configuration integral is evaluated over the “soft modes”
identified as torsion angles.3 It should be stressed, however,
that the exclusion of “hard modes” such as bond lengths and
bond angles is, in general, a poor approximation. Cyclic
structures, for example, undergo sufficient variation of their ring
bond angles and even bond lengths during conformational
interconversions to contribute a significant amount to the
conformational free energy. Therefore, a method is sought that
can evaluate the configuration integral in all degrees of freedom
in order to calculate accurate free energies.
The “mining minima” method could, in principle, include the

hard modes, but in practice, it is limited to only a few degrees
of freedom because it is based on simple Monte Carlo integra-
tion. The evaluation of multidimensional integrals is a daunting
task, and for dimensions greater than three, Monte Carlo integra-
tion is the only method available. However, simple Monte Carlo
integration requires a vast number of function evaluations to
afford reasonably accurate integrals when more than about half
a dozen dimensions are considered.4 In this paper, a novel
Monte Carlo integration technique is presented, termed mode
integration (MINTA) that operates in all degrees of freedom.
The new method allows, for the first time, for the direct calcu-
lation of conformational free energies of diverse systems, and
gives results that are virtually identical with those obtained by
converged JBW simulations. The MINTA method is applied
here to predict theA value of cyclohexane derivatives, and the
anomeric free energy of carbohydrates (tetrahydropyran deriva-
tives and pyranose monosaccharides) using a continuum sol-
vation model.

Theory

Conformational Search. Mode integration relies upon an
exhaustive conformational search of the low-energy minima.
Our method of choice is a particularly efficient conformational
search procedure termed low-mode conformational search
(LMOD).5

Monte Carlo Integration. Mode integration is based on a
novel use of the harmonic approximation to achieve remarkable
accuracy in the numerical integration of high-dimensional
molecular configuration integrals. Importance sampling Monte
Carlo integration utilizes a sampling function to preferentially
sample the integrand in those regions where the integrand has
a significant magnitude. The basic theorem of importance
sampling Monte Carlo integration asserts that the optimal choice
of the sampling functionp for the numerical integration of a
function f (in any dimensions) isp ∝ | f |, i.e., the more one
knows aboutf the better one can estimate∫ f.4c The basic tenet
of mode integration is to construct a sampling function that is
very similar to the partition function (eq 1) in the vicinity of
low-energy minima on the PES.
The obvious approach is to apply the harmonic approximation

to each low-energy well on the PES by a local, second-order
Taylor expansion of the potential energy function.6 The result-
ing sampling functions are normalized multivariate Gaussians

wherer i andH i denote, respectively, the bottom of a particular
energy well and the associated local Hessian matrix. The
Hessian is evaluated at the bottom of the well. The number of
degrees of freedomn is equal to the number of unconstrained
internal coordinates. Note thatpi also depends on the temper-
ature viaRT.

Mode integration means, in essence, that eq 3 is utilized as
a sampling function to integrate eq 1. However, for the
reduction of the proposed theory in practice, one needs to
consider two important issues: definition of the volume that is
associated with a particular conformation in conformational
space and to find an optimal coordinate system that guarantees
the most accurate integral estimates. The optimal coordinate
system can be derived by considering a simple fact about
multivariate Gaussians. In real Gaussians,H is essentially the
inverse of the covariance matrix which accounts for the
correlation between the random variables of the multivariate
Gaussian distribution. Unless the covariance matrix is diagonal,
the off-diagonal elements give rise to mixed terms in the
Gaussian exponential. However, by suitable coordinate trans-
formation termed principal component transformation, which
is based on the diagonalization of the covariance matrix, the
mixed terms can always be eliminated. The resulting Gaussian
can be expressed as a product ofn independent, univariate
Gaussian functions. Analogously, a similar transformation can
be applied to the Hessian matrix. The eigenvectors of the
Hessian matrixH i span a local, orthogonal coordinate system
centered atr i, which is closely related to the normal modes of
vibration. Utilizing the eigenvectors of the Hessian matrix in
eq 3 results in a sampling function that can be expressed as a
product ofn independent, univariate Gaussian functions whose
single variable represents the corresponding normal mode.
Importance sampling based on the proposed, separable sampling
function involves consecutively samplingn independent, one-
dimensional Gaussian functions.
The normal mode coordinate system also provides a simple

definition of the integration volume. The tail-off of one-
dimensional Gaussians can be measured conveniently in units
of standard deviation (σ). Approximately 68% of the underlying
population is covered by(1σ, and 99.7% by(3σ. In terms
of a Gaussian partition function, this means that beyond 3-4
standard deviations the Boltzmann probability vanishes. Thus,
the proposed multidimensional integration volume is an-
dimensional hypercube that is aligned along the normal modes
and whose dimensions depend on the harmonic vibrational
frequencies as well as the temperature. Note that the integration
volume is different for different conformations. MINTA
therefore, utilizes the following separable sampling function for
the Monte Carlo integration of the molecular configuration
integral

where j ) 1...n normal modes,λ1...λn are the eigenvalues of
the non-mass-weighted Hessian matrix, andx1...xn are the
corresponding normal coordinates represented by the eigenvec-
tors of the Hessian matrix. The center of the normal coordinate
system is located at the bottom of the energy well where the
gradient of the potential energy vanishes.x(RT/λ j) represents
the quasi standard deviation of the Gaussian. Note that eq 4
refers to a single conformationi. Mode integration of the full
molecular configuration integral involves integrating the indi-
vidual, conformational partition functions via importance sam-
pling using eq 4 and summing them up (eq 1)

pi )x detH i

(2πRT)n
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2RT
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wherepi is the Gaussian sampling function (eq 4),xi is the vector
of normal coordinates, andsi is the symmetry number, all for
conformationi. The integration volume0i is an-dimensional
hypercube with dimensionsdj ) 2 constx(RT/λj) measured in
units of the quasi standard deviation (eq 4) wherej ) 1...n and
const is a multiplication factor. Note that in eq 5E0i, the
reference for the energy difference in the Boltzmann exponential,
is the bottom of the individual energy wells not the global
minimumE0 (eq 1). Of course, this is only a matter of scaling.
The right-hand side of eq 5 is utilized to estimate the config-
uration integral by importance sampling inside the multidimen-
sional hypercubes.
The essence of mode integration can be captured in a single

sentence: The underlying idea that makes the method work is
a novel use of the harmonic approximation for the particularly
effective importance sampling of the true potential energy
surface in the framework of multidimensional Monte Carlo
integration.

Computational Details

The low-mode conformational search procedure and the
MINTA method have been integrated into the MacroModel/
Batchmin computational chemistry program package.7 The
calculations have been carried out using version 5.5 of Batchmin
running on Silicon Graphics workstations.
Integration Volume. Preliminary calculations were aimed

at defining the size of the hypercubes in eq 5. Note that due to
possibly overlapping hypercubes, double sampling can, in
principle, give rise to biased integral estimates. Randomly
selected conformations of several cycloalkanes and monosac-
charides were subjected to test calculations with variable size
hypercubes ranging from 1 to 5 standard deviations. The results
clearly showed that the intuitive choice of 3σ was generally
applicable to give converged free energies. Furthermore, it was
shown that the overlap issue was negligible except for one
notable case, the twist-boat (TB) conformation of cycloheptane
which is discussed further below. For all other cases, a simple
test showed that the 3σ hypercubes did not extend beyond the
catchment region of their associated conformation. In this test
calculation, thousands of structures generated by the Monte
Carlo sampling were all saved and re-minimized to see whether
sampling had escaped from the minimum well. Using 3σ, none
of the trial structures crossed a conformational barrier during
reminimization. Even using 4σ and 5σ afforded only a very
few cases where reminimization of a trial structure carried it
over to a different conformational minimum. Therefore, it was
concluded that the integration volumes (eq 5) should be defined
as 3σ hypercubes throughout.

Results and Discussion

Anharmonic Effects in Cycloheptane. The TB conforma-
tion of cycloheptane has proven to be an extremely useful test
for MINTA. In the test aimed at determining the integration
volume (vide supra), several trial conformations in the 3σ
hypercube were interconverted to the lower energy twist-chair
(TC) conformation. Senderowitz et al. also investigated cy-
cloalkanes including cycloheptane to compare conformational
free energy differences obtained by JBW and the harmonic
approximation (rigid-rotor harmonic-oscillator (RRHO) model).2

It was concluded in their study that JBW could properly account
for anharmonic effects, but generally, the harmonic approxima-
tion was not so bad except for TB cycloheptane. The free
energy difference between TB and TC cycloheptane was found
to be 1.66 kcal/mol (RRHO) and 2.8 kcal/mol (JBW), respec-
tively.2 Such a big difference between the JBW and the RRHO

calculation is indicative of significant anharmonic effects. The
following study was aimed at mapping the real shape of the
TB cycloheptane potential energy surface (PES) to determine
what is wrong with the harmonic approximation.
The adaptive implementation of importance sampling Monte

Carlo integration provides a computational tool to trace the
potential energy surface. The so-called VEGAS algorithm4b,c

operates by constructing, adaptively, a separable sampling
function. The first iteration is simple Monte Carlo integration
based on uniform sampling. However, the results of the function
evaluations are saved and used to adjust the sampling function
in subsequent iterations based on the fact that the optimal
sampling functionp∝ | f | (vide supra). The sampling function
is adjusted in subsequent iterations to preferentially sample
regions where the magnitude of the integrand is large. The
VEGAS algorithm has been implemented in the mode integra-
tion method with an important change. Instead of starting with
uniform sampling, eq 4 is applied to initiate VEGAS. Unfor-
tunately, VEGAS can only be used for up to 10 dimensions4c

and therefore cannot generally be used alone for the evaluation
of molecular configuration integrals. However, it can be used
to trace the potential energy surface in the directions of low-
frequency modes. Since a converged VEGAS sampling function
is proportional to the absolute value of the integrand, it is clear
that a converged VEGAS iteration initiated from eq 4 affords
a sampling function which is proportional to the exact partition
function. In particular, the converged pieces of the separable
sampling function (eq 4) trace the exact shape of one-
dimensional slices of the partition function, aligned by the
corresponding normal coordinate directions. For a quadratic
potential, the exact shape is a Gaussian. Therefore, the deviation
of the exact shape from the corresponding Gaussian reveals the
nature of the anharmonic effect.
The results of a VEGAS calculation applied to the first 10

low-frequency modes of TB cycloheptane are shown in Figure
1. The first five modes are aligned from left to right. In the
top row, the thick lines delineate the exact shape of the potential
surface derived from the VEGAS calculation along the corre-
sponding normal modes and the thin lines show the correspond-
ing harmonic potentials. In the bottom row, the thick lines
depict the true one-dimensional partition functions, and the thin
lines show the corresponding Gaussians. Note that for better
visualization the cumulative partition function is shown instead
of the bell-shaped function defined in eq 4. Also note that the
whole figure is autoscaled, the actual extent of the PES slices
is given below the graphs. One glance at Figure 1 immediately
reveals what is wrong with the harmonic approximation. The
very low MM28 frequency (7.0 cm-1) is unrealistic. In fact,
the corresponding 3σ hypercube extends to a spurious(25 Å
in the direction of this normal mode. Several other force fields
and an ab initio calculation also afforded similar, all too
low frequencies: MM3,9 21.9 cm-1; AMBER,10 19.3 cm-1;
AMBER94,11 29.4 cm-1; OPLS,12 12.0 cm-1; MMFF,13 25.1
cm-1; and HF/6-31G* 22.3 cm-1.
The real shape of the PES slice depicted by the thick line in

Figure 1 describes a much steeper PES. The real shape can be
characterized by a fairly narrow, flat-bottom well. Note that it
has been already known from free energy simulations that
distorting a molecule along a single, extremely flat mode often
results in “bumping” in a steep (potential) wall. However, until
very recently, this phenomenon has been treated simply as
“anharmonic effect” without further specification. Recent
quantum mechanical calculations have shown that similar effects
in a small protein (BPTI) can be attributed to anharmonicity of
the low-frequency vibrational wave functions.14 In their work
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the authors presented a PES slice very similar to those shown
in Figure 1, by which they demonstrated that inclusion of the
cubic and quartic diagonal terms of the Taylor expansion of
the potential energy sufficed to trace the true PES along a low-
frequency mode almost perfectly.14b They also stressed the
experimental significance of the problem of “extreme flat
modes” in a variety of vibrational spectroscopies.
In summary, the problem with the harmonic approximation

in this case is that the very low frequency incorrectly suggests
a shallow energy well based on the local curvature of the PES
at the flat bottom. JBW gives the correct answer, because it
samples the whole well, not only the flat bottom. For the same
reason, mode integration should give the same correct answer
with a suitable hypercube in eq 5. Therefore, a simple safeguard
is used to prevent inadequate sampling due to flat-bottom wells.
Generally, the 3σ rule is applied to the hypercube, but for
extremely soft modes the corresponding dimension of the
hypercube is limited to(3 Å. A MINTA calculation based on
the 3σ/3 Å rule using 10 000 energy evaluations, sampling all
degrees of freedom, afforded 3.0 kcal/mol free energy difference
between TB and TC cycloheptane; however, without the 3 Å
limit the result was 3.2 kcal/mol.
The true shape of the PES slice associated with mode 4

(Figure 1) exemplifies another anharmonic effect, namely, an
asymmetrical energy well. However, it is clear that the higher
modes are, in fact, very close to be harmonic, the difference
between the true PES slice and the corresponding harmonic
potential completely vanishes from the fifth mode on. It has
been shown recently that in a similar manner the higher
frequency modes of the protein BPTI are nearly harmonic.14b,15

This very fact suggests an astonishing simplification of
MINTA: numerical integration of the soft modes and analytical
integration of the hard modes based on the harmonic quantum
oscillator model. Note that the “soft” modes are defined in a
more general sense than just torsions,3 representing low-mode
conformational motions generally applicable to cyclic and
acyclic molecules.5,16 The combined numerical/analytical
MINTA algorithm involves the numerical integration of the soft
modes via eqs 4, 5 (with or without VEGAS), and the analytical
integration of the hard modes using the harmonic approximation.
In all of the following calculations, however, MINTA was used
to integrate all degrees of freedom numerically.
A Value of Methyl-, Isopropyl-, and Methylphenylcyclo-

hexane. The so-calledA value of methylcyclohexane is the

free energy difference between axial and equatorial methylcy-
clohexane.A values of numerous cyclohexane derivatives have
been determined experimentally including isopropylcyclohexane
and 1-methyl-1-phenylcyclohexane.17 Recent JBW simulations
afforded convergedA values consistent with experiment.2 Our
MINTA calculations afforded virtually identical results sum-
marized in Table 1.
The MINTA calculations involved 10 000 function evalua-

tions per conformation using the MM2 force field with infinite
nonbonded cutoffs, in vacuo, and required only a few minutes
of CPU time. It should be noted that FEP methods based on
statistical mechanics generally perform well for similar systems
in vacuum,18 however, MINTA is much faster. A recent,
successful FEP simulation that involved the interconversion of
chair conformers of methylcyclohexane by mutating an axial
dummy atom and an equatorial united atom methyl into one
another (using the AMBER force field) required 21 stages using
stochastic dynamics and spanned a total of 4.2 ns to reach
convergence.2 The united atom (8 atoms) FEP simulation took
50 CPU minutes on a 250 MHz R4400 processor, while the
full atom (21 atoms) MINTA calculation described above took
only a little over 1 CPU minute (a speed factor of∼43).
The MINTA integral estimates were calculated as block

averages based on 10 independent 1 000 point samples.4b The
resulting configuration integrals were all subject to less than
5% relative error (calculated as(1 standard deviation)4b which
is equivalent to(0.03 kcal/mol in free energy at room
temperature. Note that the particularly good results in Table 1
are not only indicative of predictive power, but equally
importantly, the remarkable agreement between JBW and

Figure 1. Anharmonic effects in TB cycloheptane: true vs harmonic one-dimensional PES slices. In the top row, the thick lines delineate the exact
shape of the potential surface along the first five low-frequency normal modes and the thin lines show the corresponding harmonic potentials. In
the bottom row, the thick lines depict the true one-dimensional, cumulative partition functions and the thin lines show the corresponding cumulative
Gaussians. The plots are autoscaled; the actual extent of the PES slices are given below the graphs along with the MM2 harmonic frequencies.

TABLE 1: Calculated and Experimental A Valuesa of
Methylcyclohexane, Isopropylcyclohexane, and
1-Methyl-1-phenylcyclohexane at 300 K

∆G (kcal/mol)b

MM2, in vacuo

JBW2 MINTA expt2

methyl 1.9 1.9 1.6-1.8
isopropyl 2.6 2.4 2.0-2.4
methylphenyl -0.10 0.15 ∼0

0.23c 0.34c 0.3c

a A value) free energy difference between axial and equatorial sub-
stituted cyclohexane.bPositive values favor the equatorial methyl, equa-
torial isopropyl, and axial phenyl substituents, respectively.c 200 K.
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MINTA results is the best cross-validation of these fundamen-
tally different methods.
Anomeric Free Energy Calculations. The successful test

on A values prompted a series of significantly more difficult
calculations of anomeric free energies. The modeling of
carbohydrates has long been a particularly difficult problem,
because conventional molecular mechanics force fields could
not account for stereoelectronic effects resulting from the unique,
condensed, and highly polar structure of carbohydrates.19,20eThe
anomeric free energy in particular, representing the free energy
difference between theR andâ stereoisomers of carbohydrates,
can be measured experimentally, but has escaped calculations
until very recently.20 Especially, the introduction of carbohy-
drate parameters in the AMBER*7 force field based on ab initio
calculations on pyranoses afforded a suitable force field for JBW
calculations.20e Therefore, a series of MINTA calculations have
been carried out using the same AMBER* force field to
calculate the anomeric free energy of tetrahydropyran derivatives
and pyranose monosaccharides, glucose, methyl glucoside,
mannose, methyl mannoside, galactose, 2-deoxyglucose, and
N-acetylglucosamine. Once again, MINTA predictions were
consistent with experiment and virtually identical with JBW
predictions. The results are summarized in Table 2.
The MINTA calculations were carried out with the united

atom AMBER* force field augmented with the new carbohy-
drate parameters.20e Solvation treatment included the GB/SA21f

continuum model with constant (ε ) 1) dielectric Coulomb
equation and extended nonbonded cutoffs (20 Å for Coulomb
and 8 Å for van der Waals interactions). The GB/SA model
belongs to the family of continuum models21 that have become
popular alternatives to explicit (molecular) solvent models22 for
the modeling of molecules in solution using molecular mechan-
ics. Explicit solvent models, while exact in principle, are very
expensive computationally and are subject to random noise
impeding convergence in FEP simulations. Furthermore, there
is no compelling evidence that using contemporary force fields
explicit solvent models are more accurate than continuum
models.23 Therefore, the use of a continuum model for the
calculation of anomeric free energies is justified. The GB/SA
model in particular has been shown to afford free energies of
solventlike dielectric polarization for small organic molecules
and peptides in water comparable to those calculated by accurate
but significantly slower Poisson-Boltzmann methods.24

The MINTA integrals were calculated as block averages based
on 10× 1000 independent energy evaluations per conformation.

The resulting anomeric free energies in Table 2 are subject to
less than(0.03 kcal/mol error. The MINTA calculations
required 25-45 CPU seconds per conformation on a 75 MHz
R8000 processor.
Note that the pyranose monosaccharides have literally

hundreds of conformations making it virtually impossible to
claim a complete conformational search. Therefore, at first
glance it seemed reasonable to use the exact same set of the
100 lowest energy conformations for the MINTA calculation
that were originally used for the JBW simulation20e to ensure
unbiased comparison. However, the resulting MINTA anomeric
free energies were off by up to 0.5 kcal/mol with respect to the
JBW results. A more careful look at the JBW algorithm
explains the discrepancy. The basic tenet of JBW is to
interconvert conformations found in a preceding search, using
an internal coordinate transformation matrix. However, JBW
also involves small random variations of the internal coordinates
and it is also coupled with stochastic dynamics.2,20e This means
that JBW, in fact, explores more of the conformational space
than just the conformations used to seed the JBW simulation.
Of course, this also means that MINTA, which is restricted to
the conformations at hand, should utilize all of the low-energy
conformations found by the preceding search. Therefore, the
MINTA calculations were repeated utilizing the full set of
conformations found during the conformational search. Indeed,
the results shown in Table 2 are in astonishing agreement with
JBW! The largest difference is only 0.13 kcal/mol (galactose),
and for half of the molecules, the difference is within the(0.03
kcal/mol error bar. It should be noted, once again, that such
remarkable agreement of two entirely different methods on a
difficult problem cross-validates them by any standard.

Conclusions

The calculation of conformational free energies is one of the
key issues in computational chemistry. In this paper, a novel
theoretical approach is proposed for the direct calculation of
conformational free energies without the need for expensive free
energy simulations and the use of computational alchemy.18 The
new MINTA algorithm is based on a particularly efficient
implementation of importance sampling Monte Carlo integration
to solve the molecular configuration integral in all degrees of
freedom. The MINTA method was applied here to study
anharmonic effects in cycloheptane and to predict theA value
of cyclohexane derivatives and the anomeric free energy of
carbohydrates (tetrahydropyran derivatives and pyranose monosac-
charides). The MINTA calculation showed that the harmonic
approximation was not applicable to TB cycloheptane because
the shape of the true potential energy surface along the lowest
frequency normal mode can be characterized by a narrow, flat-
bottom well. The MINTA predictions on theA values and the
anomeric free energies were virtually identical with those
obtained by converged JBW free energy simulations. For the
calculation of theA value of methylcyclohexane, MINTA was
at least 43 times faster than FEP. It should also be stressed
that although inaccuracies in the computational methods and
force fields have much room for improvement and good
agreement with experiment can always be attributed, at least to
some extent, to cancellation of error, 0.5 kcal/mol or better
accuracy is well within the range of serious interest for
experimentalists. In recent studies MINTA has been shown to
reproduce experimental binding free energies of enantioselective
binding of small peptides to synthetic hosts to within the same
<0.5 kcal/mol accuracy.25 In conclusion, we believe that
MINTA should find wide utility for direct conformational free
energy calculations.

TABLE 2: Calculated and Experimental Anomeric Free
Energiesa of Tetrahydropyran Derivatives and Pyranose
Monosaccharides at 300 K

∆G (kcal/mol)b

AMBER*, GB/SA water

JBW20e MINTA expt/ab initio20e

2-hydroxytetrahydropyran 0.28c 0.40c 0.69c

-1.02 -1.02 -0.95
2-methoxytetrahydropyran 0.65c 0.68c 0.94c

0.36d 0.38d 0.64
-0.41 -0.35 -0.7 to 0.1

glucose -0.22 -0.11 -0.34
methyl glucoside 0.53 0.59 0.42
mannose 0.21 0.21 0.34 to 0.45
methyl mannoside 1.34 1.35 1.70
galactose -0.03 0.10 -0.37
2-deoxyglucose -0.45 -0.38 -0.05
N-acetylglucosamine 0.50 0.52 0.51

a Anomeric free energy) free energy difference betweenR andâ
anomers.b Positive values favor theR anomer; negative values favor
theâ anomer.c In vacuo.dGB/SA chloroform.
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